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Online  state  prediction  and  fault  detection  are  typical  tasks  in the  chemical  industry.  In practice  it often
happens  that  some  variables,  important  and  critical  for  quality  control,  cannot  be  measured  online  due
to such  restrictions  as  cost  and  reliability.  An uncertainty  existing  in  real  systems  allows  to  use a  proba-
bilistic  approach  to  online  state  estimation.  Such  an  approach  is  proposed  in  this paper.  Different  types
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of information  appearing  in an  online  diagnostic  system  are  processed  via  combination  of algorithms
subject  to  probability  distributions.  This  combination  of algorithms  is  presented  as  a  decomposed  ver-
sion  of Bayesian  filtering.  In  this  paper,  the  proposed  solution  is  specialized  for  a system  with  mixed  both
continuous  and  discrete-valued  measurements  and  unobserved  variables.

© 2011 Elsevier Ltd. All rights reserved.

ixed data

. Introduction

Online state prediction and fault detection are typical tasks in
he chemical industry. In practice it often happens that some vari-
bles, important and critical for quality control, cannot be measured
nline due to such restrictions as cost and reliability. It means that
he needed variables must be estimated using a model concerned
ith an available set of measurements (for example, temperature

n non-isothermal reactors, gaseous flow rates, dissolved oxygen
oncentration in bioreactors, etc.).

Many various approaches (model-driven as well as data-driven
oft sensors) are developed for state prediction in the field of
ndustrial processing plants (e.g., Lin, Recke, Renaudat, Knudsen,

 Jörgensen, 2005; Park & Han, 2000). Their main task is to pro-
ide estimates of unmeasured variables based on the knowledge
f the process dynamics and on the available online observations.

 detailed overview of the most popular soft sensor techniques is
iven in Kadlec, Gabrys, and Strandt (2009).  However, despite the
igh number of papers, there are still open or weakly supported

ssues in this area.
Many tasks in the process industry (in chemical plants as well)
till need manual control and decision-making of an operator. An
nline state predictor supports the operators and allows them to
ake faster and more objective decisions. Another problem is the

∗ Corresponding author.
E-mail addresses: suzdalev@utia.cas.cz (E. Suzdaleva), nagy@utia.cas.cz (I. Nagy).

098-1354/$ – see front matter ©  2011 Elsevier Ltd. All rights reserved.
oi:10.1016/j.compchemeng.2011.09.004
rather dynamic nature of the processing plants. It means that a soft
sensor should react fast to sudden process input changes, which is
a difficult task, usually involving high costs.

Fault detection and diagnosis methods are nicely described
in Venkatasubramanian, Rengaswamy, Kavuri, and Yin (2003).
According to Venkatasubramanian et al. (2003),  design and imple-
mentation of nonlinear model-based soft sensors are still limitedly
supported and limitedly reliable for chemical processes. Most
quantitative methods are based on input–output models, and when
they are restricted to linear applications, their advantages over
statistical technique such as Principal Component Analysis (PCA)
are minimal. Besides nonlinearity, modeled quantities can demon-
strate both a continuous and a discrete character (for example, the
system is normal or faulty, it is one or another fault, etc.).

Research published in Kadlec et al. (2009) and
Venkatasubramanian et al. (2003) show that there is no sin-
gle universal method to handle all the requirements for a
diagnostic system. Single-method based systems are seriously
limited in application, which again increases the necessity of
manual supervising. Combination of methods in the form of a
hybrid system is seen as a flexible adaptive way. Exploitation of
different types of knowledge in a hybrid system will contribute to
fast and more effective decision-making, and finally, integration
of diagnostic methods with other process operations will lead to a

more comprehensive intelligent supervisory control system.

An uncertainty existing in real systems allows to use a prob-
abilistic approach to online state estimation. Such an approach is
proposed in this paper. Different types of information appearing

dx.doi.org/10.1016/j.compchemeng.2011.09.004
http://www.sciencedirect.com/science/journal/00981354
http://www.elsevier.com/locate/compchemeng
mailto:suzdalev@utia.cas.cz
mailto:nagy@utia.cas.cz
dx.doi.org/10.1016/j.compchemeng.2011.09.004
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n an online diagnostic system are processed via combination of
lgorithms subject to probability distributions. This combination of
lgorithms is presented as a decomposed version of Bayesian filter-
ng (Kárný et al., 2005). Universal in terms of probability (density)
unctions, here it focuses on a system with mixed both continu-
us and discrete-valued measurements and unobserved variables.
t means both linear and nonlinear information is modeled. The pro-
osed method uses analytical solutions as far as possible. It means
hat numerical procedures are applied only in those parts which
annot be computed analytically.

Layout of the paper is as follows. Section 2 describes problem
ormulation, basic facts about models used and Bayesian filtering.
ection 3 is devoted to probabilistic approach to online hybrid
ltering. Section 4 demonstrates application of general solution
o normal and discrete multinomial models. Section 5 provides
llustrative examples with real discrete data sample and normal
imulations. Comparison with one of the counterparts is presented.
emarks in Section 6 close the paper.

. Preliminaries

.1. Problem formulation

The system considered is concerned with the following obser-
ations: the system output yt and the control input ut measured at
iscrete time moments t = {1, . . .,  T} ≡ t*. In general, all the variables
re column vectors such as yt = [y1;t, . . . , yY;t] ′, ut = [u1;t, . . . , uU;t] ′

ncluding entries that can be both continuous and discrete-valued.
The system state xt = [x1;t, . . . , xX;t] ′ is not directly observed and

as to be estimated in an online (recursive) mode.

.2. State-space model

The system is described by the state-space model in the form of
he following conditional probability (density) functions (p(d)fs)

bservation model : f (yt |xt, ut) , (1)

tate evolution model : f (xt+1|xt, ut) , (2)

or simplicity denoted as pdfs within this paper.
The unobserved state can be estimated with the help of Bayesian

ltering (Kárný et al., 2005).

.3. Bayesian filtering

Bayesian filtering includes the following coupled formulas.
Data updating

(xt |D(t)) = f (yt |xt, ut) f (xt |D(t − 1))∫
f (yt |xt, ut) f (xt |D(t − 1)) dxt

∝ f (yt |xt, ut) f (xt |D(t − 1)) (3)

ncorporates information contained in observations D(t) = (d1, . . .,
t), where dt ≡ (yt, ut). Relation (3) also comprises the natural con-
itions of control (Peterka, 1981), according to those

 (xt |ut, D(t − 1)) = f (xt |D(t − 1)).

Time updating
(xt+1|D(t)) =
∫

f (xt+1|xt, ut) f (xt |D(t)) dxt (4)

ulfills state prediction.
The prior pdf f(x1|D(0)) which expresses the subjective prior

nowledge of the system’s initial state starts the recursions.
ical Engineering 36 (2012) 294– 300 295

2.4. Chain rule

An operation intensively used throughout the paper is
Chain rule

f (a,  b|c) = f (a|b, c) f (b|c) (5)

which decomposes the joint pdf f (a, b|c) into a product of condi-
tional pdfs for any random variables a, b and c.

3. Recursive hybrid filtering

Let’s consider a system with observations yt = [yc
t , yd

t ]′, ut =
[uc

t , ud
t ]′, and with an unobserved state to be estimated xt = [xc

t , xd
t ]′,

where superscript c denotes a continuous type of variable, while
superscript d belongs to a discrete variable. Sign ′ denotes transpo-
sition. All the variables in general are multivariate.

To perform estimation for such a hybrid system, firstly, Bayesian
filtering (3) and (4) is proposed to be done in one integration step,
i.e.,

f (xt+1|D(t)) ∝
∫

f (xt+1|xt, ut)

⎧⎪⎨
⎪⎩f (yt |xt, ut) f (xt |D(t − 1))︸  ︷︷  ︸

∝f (xt |D(t))

⎫⎪⎬
⎪⎭ dxt,

(6)

which is obtained by a trivial substitution of the state estimate
updated by measurements (3) into the time updating (4).

The basic idea of the proposed hybrid filter consists in applica-
tion of the chain rule (5) to models (1) and (2) and relation (6).  All
the joint pdfs must be decomposed to products of conditional pdfs
of the individual vector entries. This decomposition allows to model
and estimate variables which bring different-type information, i.e.,
they can be either continuous or discrete in their values.

3.1. Decomposition of models

Using the chain rule (5),  one decomposes the observation model
(1)

f (yt |xt, ut) = f (yc
t , yd

t |xc
t , xd

t , uc
t , ud

t )

= f (yc
t |yd

t , xc
t , xd

t , uc
t , ud

t )f (yd
t |xc

t , xd
t , uc

t , ud
t )

= f (yc
t |yd

t , xc
t , uc

t )f (yd
t |xd

t , ud
t ) (7)

realistically assuming that the past discrete state and discrete input
can be omitted from the condition for the continuous output yc

t ,
and continuous entries – from the condition for discrete yd

t . The
obtained decomposition represents a product of pdfs.

Similarly the state evolution model (2) is decomposed as

f (xt+1|xt, ut) = f (xc
t+1, xd

t+1|xc
t , xd

t , uc
t , ud

t )

= f (xc
t+1|xd

t+1, xc
t , xd

t , uc
t , ud

t )f (xd
t+1|xc

t , xd
t , uc

t , ud
t )

= f (xc
t+1|xd

t+1, xc
t , uc

t )f (xd
t+1|xd

t , ud
t ). (8)

3.2. Prior pdfs

A form of the prior pdf should be specified to be used in (6).  The
joint prior pdf is also decomposed as

f (xt |D(t − 1)) = f (xc
t , xd

t |D(t − 1)) = f (xc
t |xd

t , D(t − 1))f  (xd
t |D(t − 1)).
(9)

Preserving this product form even for posterior distribution
is a condition for recursive updating. This form is spoiled during
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stimation and must be approximately restored. This is the main
heoretical result of the presented paper.

.3. Hybrid state estimation

Substituting (7)–(9) in (6),  one obtains the following relation

 (xc
t+1|xd

t+1, D(t))f (xd
t+1|D(t))

∝
∫

xc∗

∑
xd∗

f (xc
t+1|xd

t+1, xc
t , uc

t )f (xd
t+1|xd

t , ud
t )︸  ︷︷  ︸

f (xt+1|xt ,ut)

× f (yc
t |yd

t , xc
t , uc

t )f (yd
t |xd

t , ud
t )︸  ︷︷  ︸

f (yt | xt ,ut )

f (xc
t |xd

t , D(t − 1))f (xd
t |D(t − 1))︸  ︷︷  ︸

prior pdf

dxc
t

=
∑
xd∗

f (xd
t+1|xd

t , ud
t )f (yd

t |xd
t , ud

t )f (xd
t |D(t − 1))

×
∫

xc∗
f (xc

t+1|xd
t+1, xc

t , uc
t )f (yc

t |yd
t , xc

t , uc
t )f (xc

t |xd
t , D(t − 1)) dxc

t . (10)

Applying Bayesian filtering (3) and (4),  and respectively (6),
o the integral in (10) one obtains the updated state estimate

 (xc
t+1|xd

t+1, D(t)) inside a sum over set of the discrete state values
d*. Similar application of (3) and (4) and (6) to discrete models in
10) with replacing the integration by regular summation gives the
pdated discrete state distribution, i.e., f (xd

t+1|D(t)). In this way, the
riginally desired relation in (10) loses the prescribed form of the
osterior pdf and becomes a sum of distributions, i.e.,

 (xc
t+1|xd

t+1, D(t))f (xd
t+1|D(t)) ∝

∑
xd∗

f (xd
t+1|D(t))f (xc

t+1|xd
t+1, D(t)).

(11)

It is necessary to restore the original form (9) in order to use it for
he next step of estimation. An approximation based on Kerridge
naccuracy is an explicit solution, which restores the original form
f the pdf via computation of a specific weighted combination of the
dfs involved in (11). Kerridge inaccuracy (Kerridge, 1961) is a part
f Kullback–Leibler divergence (Kullback & Leibler, 1951) adopted
s a theoretically justified proximity measure. This divergence is
nown to be an optimal tool within the Bayesian approach (Kárný
t al., 2005). For any random variable a, Kerridge inaccuracy is used
o measure the proximity of pdfs f(a) and f̂ (a)

a(f (a)||f̂ (a)) =
∫

a∗
f (a) ln

1

f̂ (a)
da (12)

nd its minimization allows to find the approximated pdf f̂ (a).

ccording to this approximation (Kárný et al., 2005), the sum in

11) is replaced by the product

 ̂ (xc
t+1|xd

t+1, D(t))f (xd
t+1|D(t)), (13)

hich is used as the prior pdf for the next step of recursive estima-
ion.

The proposed general probabilistic approach assumes its uni-
ersality in the sense of exploited distributions. Let’s demonstrate
ts application to linear normal and discrete multinomial models.
ical Engineering 36 (2012) 294– 300

4. Solution for normal and multinomial distributions

4.1. Models

The observation model (7) represents a product of distributions
f (yc

t |yd
t , xc

t , uc
t )f (yd

t |xd
t , ud

t ), where

f (yc
t |yd

t , xc
t , uc

t ) = (2�)−Y/2|Rv|−1/2

× exp
{

−1
2

[yc
t − Cxc

t − Huc
t ]′R−1

v [yc
t − Cxc

t − Huc
t ]
}

(14)

is the multivariate normal distribution, where C and H are known
parameters, uc

t is a known input and vt is white Gaussian noise with
zero mean and known covariance Rv. The multinomial distribution

f (yd
t |xd

t , ud
t ) (15)

is provided by the output transition table and a known probability
˛q|l,n with multi-index q|l, n. This multi-index denotes realizations
q ∈ {1, . . .,  Q} of random variable yd

t at time instant t according to
a set of its possible values {1, . . .,  Q}, where Q is a finite number.
Realization q in the multi-index q|l, n is conditioned by realizations
l ∈ {1, . . .,  L} of state xd

t and n ∈ {1, . . .,  N} of input ud
t from their

sets of possible values with finite numbers L and N. Notation ˛q|l,n

reflects probability of transition to the output yd
t = q conditioned

by xd
t = l and ud

t = n. It holds

Q∑
q=1

˛q|l,n = 1 and ˛q|l,n ≥ 0 ∀q, l, n.

Distribution (14) exists for each value q of discrete output yd
t .

Similarly, the state evolution model (8) is a product
f (xc

t+1|xd
t+1, xc

t , uc
t )f (xd

t+1|xd
t , ud

t ), where

f (xc
t+1|xd

t+1, xc
t , uc

t ) = (2�)−X/2|Rw|−1/2

× exp
{

−1
2

[xc
t+1 − Axc

t − Buc
t ]′R−1

w [xc
t+1 − Axc

t − Buc
t ]
}

(16)

is the multivariate normal distribution, where A and B are known
parameters and wt is white Gaussian noise with zero mean and
known covariance Rw; and

f (xd
t+1|xd

t , ud
t ) (17)

is the multinomial distribution presented by the state transition
table containing known probabilities ˇl|m,n with a multi-index l|m,
n. Here the multi-index is evolved in a similar way  as for the obser-
vation model but the condition m ∈ {1, . . .,  L}, which relates to the
value of the state xd

t at time instant t, while l here belongs to xd
t+1.

It holds

L∑
l=1

ˇl|m,n = 1 and ˇl|m,n ≥ 0 ∀l, m, n.

Distribution (16) exists for each possible value of discrete state
xd

t .

4.2. Choice of prior distributions

The product of prior pdfs (9) is specialized in the following way

f (xc
t |xd

t , D(t − 1))f (xd
t |D(t − 1))∼N(�t, Pt)pxd

t
, (18)

where the first factor N(�t, Pt) denotes the prior normal distribu-

tion with the initial mean value �t and the initial covariance matrix
Pt that has to be estimated for time instant t + 1. The second factor
pxd

t
is the prior multinomial distribution of discrete state xd

t . Here it

has the form of a vector containing the initial probabilities pl ∀l ∈ {1,
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Table  1
Estimation error and correct point estimates.

EE CPE

.
h

∑

4

m
o
t
t

K

�

P

�

P

r
i

m
e
y
t
∀
p

a

p

r

f

w

4

o
t
o
t
o
(
m
a

�

time

T
he

 f
ir

st
 n

or
m

al
 v

ar
ia

bl
e

Normal state estimation

simulated

HF

IMM

0 50 100 150 200 250

1

1.5

2

2.5

3

3.5

4

time

D
is

cr
et

e 
st

at
e 

va
lu

es

Discrete state estimation

 

 

true

HF

IMM

Clustering

first variable

se
co

nd
 v

ar
ia

bl
e

simulated

HF

IMM

Fig. 1. Hybrid and IMM  filters with higher valued diagonal covariance matrices. The
HF 0.1117 216
IMM 0.1565 160

 . .,  L} at time instant t, and it has to be estimated for time t + 1. It
olds

L

l=1

pl = 1 and pl ≥ 0 ∀l.

.3. State estimation for normal and multinomial distributions

In general, application of (3) and (4) to linear normal state-space
odel provides Kalman filter (Grewal & Andrews, 2001).  Solution

f the integral in (10) for normal distributions without calcula-
ion of the normalizing constant computationally coincides with
he Kalman filter (Peterka, 1981), i.e.,

G = PtC′(CPtC′ + Rv)−1, (19)

t = �t + KG(yc
t − C�t − Huc

t ), (20)

t = Pt − PtC′(Rv + CPtC′)CPt, (21)

t+1 = A�t + Buc
t , (22)

t+1 = APtA′ + Rw, (23)

un for each value of xd
t . This predicts the normal state providing

ts mean �t+1 with covariance matrix Pt+1.
A part of (10) outside the integral corresponds to discrete

ultinomial distributions. The explicit solution of recursive state
stimation for them takes the following form. With observations
d
t = q ∈ {1, . . . , Q } and ud

t = n ∈ {1, . . . , N} available at time instant
 the predicted probability pl for time instant t + 1 is computed
l ∈ {1, . . .,  L} in the following way

l = ˇl|1n˛q|1np1 + ˇl|2n˛q|2np2 + · · · + ˇl|Ln˛q|LnpL (24)

nd then normalized, i.e.,

l = pl

L∑
l=1

pl

,

esulting in the multinomial distribution

 (xd
t+1|D(t)) = pxd

t+1
, (25)

hich preserves the original form.

.3.1. Approximation
However, the estimate of the normal state does not keep its

riginal form, and relation (11) in this case is the mixture distribu-
ion

∑L
l=1plN(�l,t+1, Pl,t+1), where �l,t+1 and Pl,t+1 denote results

f the Kalman filter (19)–(23) obtained for each value l. Restoring
he original normal form needs to use the approximation based
n Kerridge inaccuracy (Kerridge, 1961). According to Kárný et al.
2005), in the case of normal pdfs the Kerridge inaccuracy (12) is

inimized with the following mean and covariance matrix of the
pproximated distribution
ˆ t+1 =
L∑

l=1

pl�l,t+1, (26)

top plot shows that the HF estimates are closer to simulated values than the IMM
ones. At the middle plot the difference between results is more significant: the HF
results cover most discrete values, while IMM  does not catch value 4 from 70 to
120 time periods and value 2 around 215 time periods. The bottom plot shows the
working modes found as clusters.
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Fig. 2. Hybrid and IMM  filters with full higher valued covariance matrices. Here, the
noticeable advantage of HF at the middle plot can be seen: value 4 is not covered by
IMM  at all.
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Fig. 3. Hybrid and IMM  filters with a mixed character of noises. The difference
among simulated data and estimates of both the methods is shown in the form
of  clustered working modes of the system.

P̂t+1 =
L∑

l=1

plPl,t+1 +
L∑

l=1

pl( �̂t+1 − �l,t+1)2. (27)

The approximation (26)-(27) is then used as the prior normal
distribution for the next step of the recursion.

5. Results

To test the proposed hybrid filter (HF), a real discrete data sam-
ple and simulations of the normal state-space model have been
taken. The discrete data sample contains the state and the output
both with 4 possible values and the control input with 2 possible
values. The normally distributed two-dimensional variables have
been simulated for 4 values of the discrete state that can be inter-
preted as the system working modes. This hybrid system state has
been estimated via the proposed method and, to compare, with
the help of the interactive multiple model (IMM)  algorithm (Bar-
Shalom, Kirubarajan, & Li, 2002).  The IMM  filter is a well-known
approach, which performs Kalman filter (Grewal & Andrews, 2001)
for each model and then computes a weighted combination of
updated state estimates produced by all the filters. The IMM  fil-
ter is close to that proposed in this paper. Difference is that the
presented method takes the state-space model in a general form
for both the normal and discrete states along with mixed observa-
tions and control inputs. Comparison of these filters provided the
following results.

5.1. Experiment with diagonal covariance matrices and big noises

The first experiments were performed with rather noisy data,
i.e., with higher-valued diagonal covariance matrices Rv and Rw .
They were used both for simulation and estimation. The prior dis-
tributions were chosen in the same form for all experiments for
both the algorithms. The estimation error (EE) was calculated in
the following way

EE = 1∑
(xc − �̂ )′(xc − �̂ ),
T
t

t t+1 t t+1

where T = 288 is the duration of the estimation and xc
t is the sim-

ulated state. For discrete state estimation, a number of correctly
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Fig. 4. Hybrid and IMM  filters with difficult for distinguishing normal models. One can see in the left plot that the normal state estimates for both the filters differ insignificantly.
The  right plot shows a better stability of the hybrid filter: 215 correctly point-estimated states for the hybrid filter and 97 for the IMM  one.

Table  2
Estimation error and correct point estimates.

EE CPE

p
e
i
c
i
fi
d
n
(
q
s

5
n

c
e
t
o
c
I
d
t
e
c

5

a

5

n
n

Table 3
Estimation error and correct point estimates.

EE CPE

HF 0.2012 216
IMM  0.2235 112

Table 4
Estimation error and correct point estimates.

EE CPE

HF 4.0918 215
IMM  3.5256 210

Table 5
Estimation error and correct point estimates.

EE CPE
HF 0.0980 216
IMM  ∞ 125

oint-estimated states (CPE) from the total 288-data sample was
valuated for both the filters. It is assumed that for better qual-
ty of estimation, EE should have a minimal value, and CPE on the
ontrary – a maximal (from 288) value. EE and CPE can be seen
n Table 1. They both demonstrate a better stability of the hybrid
lter, although the difference between EE is rather small. Fig. 1
emonstrates comparison of the HF and IMM  results for one of the
ormal state variables (top), discrete state (middle) and clustering
bottom). The estimation of the second normal state is of a similar
uality. It can be seen that the advantage of the hybrid filter is more
ignificant for the discrete state estimation.

.2. Experiment with diagonal covariance matrices and small
oises

The same data but with low-valued diagonal covariance matri-
es Rv and Rw , i.e., small noise systems, were used for this
xperiment. The IMM  filter behaved unstably and the estima-
ion failed. This was caused by the likelihood computation in the
utput prediction of the update step. The occurred problem of
ovariance matrix singularity seems to be a sensitive point of the
MM  filter because of the great difference between output values
uring switching among working modes. Here low-noise data con-
ributed to greater output value differences than in the previous
xperiments. The hybrid filter was stable with improved results in
omparison with Section 5.1.  The results can be found in Table 2.

.3. Experiment with full covariance matrices and high noises

This experiment gave results similar to the first one with the
dvantage of the hybrid filter, see Table 3 and Fig. 2.

.4. Experiment with mixed low and high noises
This experiment was performed with a mixed character of
oises: small noises for some of the normal models and higher
oises for others. Another random generator seed was  used for
HF 0.5965 216
IMM  0.8114 151

simulation. Here a sharp improvement of the IMM filter was
observed that can be seen in Table 4. However, slight reduction of
values of noise covariance matrices (keeping a mixed nature) again
gave an improvement of HF, see Table 5. The working modes of the
system as clusters found by both the filters are shown in Fig. 3.

This experiment motivated the comparison of filters from the
point of view of “closeness” or “distinguishing” of normal models.
In practice, the system working modes can be close to each other
or even be partially overlapping. Such data is difficult to identify.

5.5. Experiment with very close and very different normal models

The experiment with very close and difficult for distinguishing
normal models demonstrated a better stability of the hybrid fil-
ter: 215 correctly point-estimated states for the hybrid filter and
97 for the IMM  one. The results are shown in Fig. 4. The normal
state estimates for both the filters were obtained with a practically
insignificant difference.

Results of the experiments with the sharply different models,

see Table 6, and those with one sharply different normal model
and others difficult for distinguishing, see Table 7, demonstrated a
significantly better quality of the discrete state estimation for HF
against IMM.  Estimation quality for the normal states is also better
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Table  6
Estimation error and correct point estimates.

EE CPE

HF 0.1355 216
IMM 0.1683 135

Table 7
Estimation error and correct point estimates.

EE CPE
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HF 0.3036 217
IMM  0.3921 132

or the hybrid filter, although a difference in EE is not as significant
s in CPE.

.6. Discussion

To summarize the experimental part of the work, one can note
hat the hybrid filter was stable in all the experiments and had bet-
er results in that part which deals with estimation of the discrete
tate. In comparison to the IMM  filter, the HF one is not sensitive
o a greater difference in output values when a system is switching
mong working modes. Due to the explicit solution of discrete state
stimation, computations in HF are much simpler. It contributed to
he improved stability of HF, while the IMM  estimation sometimes
ailed.

Moreover, it was observed during the experiments that the IMM
lter gives better results when normal components are simulated
ith sharply different parameters, and therefore can be easier iden-

ified. The closer and more similar normal models, the worse the
MM  results. The hybrid filter is more successful in that sense and
oes not possess this property due to the used approximation. It
emonstrates a much smoother difference between its good and
ad results.

. Conclusion

The paper proposes the decomposed version of Bayesian fil-
ering specialized for hybrid dynamic systems with normal and
iscrete multinomial states and observations. A similar problem

s considered, for instance, in Elliot and Sworder (1996),  where
iscrete state is treated via hidden Markov models (HMM)  and a

olution is presented as Gaussian sum with explicitly computed
pecific weights, means and variances. However, a number of
tatistics grows geometrically in time, which restricts duration of
nline estimation by number of time steps. In contrast to that, the
ical Engineering 36 (2012) 294– 300

approach proposed in this paper runs online and does not cause
increasing the statistics in time.

Other methods closely related to that described in this paper are,
for example, iterative techniques nicely presented in Doucet and
Andrieu (2001) and the mixture Kalman filter (Chen & Liu, 2000).  A
part concerned with the estimation of discrete multinomial state is
also close to HMM  theory (Beal, Ghahramani, & Rasmussen, 2002).
However, the algorithms mentioned run mostly offline and are sup-
ported by Monte Carlo computations. The presented paper aims at
online state estimation and exploitation of explicit solutions using
numerical procedures only in that parts, which cannot be computed
analytically.

Comparison with one of the main counterparts – the interactive
multiple model (IMM)  filter (Bar-Shalom et al., 2002) – is presented.
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